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The swirling round laminar jet 
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Abstract. The swirling round laminar jet in an unbounded viscous fluid is investigated in this paper. The 
axisymmetric laminar jet with a swirling velocity is simulated by a linear-momentum source and an angular- 
momentum source, both located at the origin. The first-order and the second-order solutions in the far field have 
been obtained by solving the complete Navier-Stokes equations. It is found that the first-order solution is the 
well-known round-laminar-jet solution without the swirling velocity obtained by Landau [2] and Squire [3]. The 
second-order solution represents a pure rotating flow. The swirling velocity predicted by the present solution is 
compared with that obtained by Loitsyanskii [15] and G6rtler [16], who solved the corresponding boundary-layer 
equations. It is found that the swirling velocity predicted by the present theory is smaller than that obtained from 
the boundary-layer equations. 

1. Introduction 

Solutions for laminar and turbulent jets have important applications in aerodynamics, 
combustion technology, and many other fields. The recent development in submerged jets of 
liquid metal combustion (see Hughes et al. [1]) may lead to the production of new 
propulsion systems for underwater vehicles. In order to maximize the combustion efficiency, 
the liquid jet is given a swirling velocity when leaving the nozzle orifice. However, even for 
laminar flows, there are only a few exact or asymptotic solutions of the Navier-Stokes 
equations due to mathematical difficulties. 

The steady-state flow field of an incompressible fluid in an unbounded space due to a point 
source of momentum was studied by Landau [2] and Squire [3] independently, and it is 
called the Landau-Squire round laminar jet, which is one of the few exact solutions of 
nonlinear axisymmetric Navier-Stokes equations. Schlichting [4] solved the same problem 
using the boundary-layer equations at large Reynolds numbers in 1933. The development of 
a round laminar jet produced by a point force in an unbounded fluid was analyzed by Sozou 
and Pickering [5]. In their paper, the similarity method was applied and then the Navier- 
Stokes equations were solved numerically. Sozou [6] obtained an analytical solution for the 
initial stage of the development of a round laminar jet by solving the unsteady Stokes 
equations instead of the full Navier-Stokes equations. 

Taylor [7] and Kraemer [8] studied the flow induced by a slender jet, with or without 
walls, by an inviscid potential-flow theory as a first approximation. On the other hand, exact 
solutions for a laminar, axisymmetric jet emerging from an orifice in a plane or conical wall 
were given by Squire [9] and Morgan [10], respectively. However, their solutions cannot 
satisfy the no-slip boundary conditions. Potsch [11] reconsidered and generalized the exact 
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solutions for axisymmetric laminar jets from an orifice in a conical wall with neat solution 
forms. Both Morgan and Potsch stated that a non-trivial similarity solution for the jet flow 
satisfying the no-slip condition at conical walls did not exist. Squire and Potsch also showed 
that, in the presence of walls, the induced flow is not an inviscid flow, even in the limiting 
case of very high orifice Reynolds numbers. Schneider [12] found a non-trivial similarity 
solution satisfying the no-slip condition at the wall, by using the matched asymptotic- 
expansion method. In Schneider's solution, the outer solution (induced flow) was matched to 
the inner solution (jet). With respect to the outer flow region, the slender jet acted as a line 
mass sink of constant strength. He concluded that a non-trivial similarity solution, for the 
axisymmetric flow induced by a jet satisfying the no-slip condition at walls, exists in the 
limiting case as the Reynolds number approaches infinity. Schneider [13] showed that, at a 
finite distance, depending on the orifice Reynolds number, the jet diameter becomes very 
large, and a recirculating flow was predicted by using a multiple-scaling approach. Zauner 
[14] confirmed the existence of a recirculating flow by experiments. 

The viscous swirling jet, in which the interaction between the azimuthal and the axial 
velocity components is important, is less understood even without walls. An asymptotic 
solution for a swirling jet was obtained by Loitsyanskii [15] and G6rtler [16] applying the 
boundary-layer equations at large Reynolds numbers in the far field from the jet source. The 
higher-order terms of the asymptotic expansion were derived by Fal'kovich [17] in order to 
analyze the stream with more swirl, as well as the effect of twisting on the axial velocity 
profile. Zubtsov [18] analyzed a weak swirling jet, using a self-similar method to construct an 
asymptotic solution of the boundary-layer equations with small circulation. The only attempt 
to solve the swirling axisymmetric laminar jet with the Navier-Stokes equations was made by 
Wygnanski [19]. He assumed that there was a similarity solution with no-slip boundary 
conditions on the wall, although this assumption was not correct since no similarity solutions 
existed with the presence of the wall at finite Reynolds numbers. 

Long [20] obtained a solution for a line vortex in an infinite viscous fluid. Similarity 
arguments led to a reduction of the Navier-Stokes equations to a set of ordinary differential 
equations, which can be simplified by a boundary-layer approximation. The simplified 
equations were integrated numerically by Long [20]. The inviscid stability of Long's vortex 
was studied by Foster and Duck [21] and by Foster and Smith [22], the latter included many 
references on stability problems involving a variety of vortices. However, the stability 
problem will not be studied in the present paper. 

Yih et al. [23] found a class of exact solutions of the Navier-Stokes equations for conical 
vortices. On the conical surface, the slip condition was used. The azimuthal velocity was 
assumed to be inversely proportional to the distance. Thus the angular momentum of the 
entire fluid was either infinite or zero. 

In the present paper we shall investigate the swirling round laminar jet, due to a point 
linear-momentum source and a point angular-momentum source of finite magnitude, in an 
unbounded viscous fluid by obtaining an asymptotic solution of the Navier-Stokes equations 
at a large distance from the linear- and angular-momentum sources. Various limiting forms 
of our solution are discussed and compared with other approximate solutions. 

2. Governing equations and boundary conditions 

Let us consider the motion of an incompressible fluid produced by a point force and a point 
torque at the origin of a spherical polar coordinate system (r, O, 4~). The direction of the 
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force and the torque is along the axis 0 = 0. Therefore, the flow field is axially symmetric 
about this axis. The velocity vector is denoted by u = (u, v, w), where u, v, and w are the 
velocity components in the r, 0, and ~b directions, respectively. Because of the axial 
symmetry, the velocity u is independent of & and the continuity equation becomes 

1 a(rZu) 1 O(v sin 0) 
r z O ~  + r sin-----0 00 - 0.  (1) 

It is convenient to introduce a Stokes stream function qJ for an axisymmetric flow such that 

] 04, 
u -  ~ , (2a) 

r sin 0 00 

1 O@ 
v - (2b) 

r s i n 0  Or 

For a steady flow, the governing equations are the axisymmetric Navier-Stokes equations 
with body forces neglected, 

/ u . u ~  Vp 
x (v x u ) -   vx(vxn), (3) 

P 

where p is the density, p the pressure, and v the kinematic viscosity coefficient. Let r be the 
radius of a sphere centered at the origin and S be its surface. The integration of the 
momentum-flux tensor on the spherical surface gives the point force F exerted by the sphere 
on the surrounding fluid, and the integration of the angular momentum flux tensor gives the 
point torque M. F and M act along the axis, 0 = 0. Hence 

F = fs ( I I .  n) d S ,  (4a) 

M =  f~ r x ( H . n )  d S ,  (4b) 

where lI  is the momentum-flux tensor, r the position vector, and n the unit normal vector 
pointing away from the origin. In a Cartesian coordinate system, the momentum-flux tensor 
can be expressed as 

II u = puiu j + p6ij - IZ(Ui4 + uj,i) , (5) 

where i, j = 1, 2, 3, 6 u is the Kronecker delta and/x is the dynamic viscosity coefficient. The 
boundary conditions at infinity are 

u = 0 ,  p = 0  as r---~oc. (6) 

The value of the Stokes streamfunction ~0 is assumed to be zero at 0 = 0. 
Since the given force and torque are in the same direction, we can reduce (4a) and (4b) 

from vector forms to scalar forms by the following procedure. The ~b-component of H . n  
should vanish after the integration due to the axial symmetry. The resultant force F is in the 
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direction of 0 = 0 with a magnitude 

c o s 0 -  p u v - t Z r ~ r  r O0 sin0 r 2 s i n 0 d 0 .  
(7) 

Similarly, the r-component of I I . n  vanishes after taking a cross product with r, and the 

O-component of I I - n  vanishes after the integration due to the axial symmetry. Hence the 
resultant torque is also in the direction of 0 - - 0  with a magnitude 

0 
M = 27r f o  [ pUw - lZr ~r ( W ) ]r3 sin20 dO . (8)  

3. Asymptotic solutions 

Because the velocity and the pressure vanish at infinity, we propose to expand the velocity 
and the pressure as power series in 1/r  in the far field with the coefficients functions of 0 

only. Thus, the stream function q~, the th-component velocity, and the pressure are assumed 
to be 

a i qJ= v ar + ~ , (9) 
r 

b E i (10) W = V  - - 7 ,  
i= l  r 

2 x ,  (11) p = p P  /-5 -5 , i=1 r 

where a, a 0, a i, b i and ci (i = 1, 2, 3 , . . . )  are functions of 0 only. This technique is similar to 
the boundary-layer solution for the case with swirl by Loitsyanskii [15]. Substituting ~0 into 

(2a) and (2b), we have 

= - -  + r i + 2  j , (12) u sin 0 r /=o 

E 
v -  s in0 r i=1 

where ' denotes the derivative with respect to 0. Substituting the velocity u and the pressure 

p into the governing equations and boundary conditions, and collecting the coefficients of 
like terms of 1/r, we have a series of ordinary differential equations and corresponding 
boundary conditions. 

If we examine the order of each term in the Navier-Stokes equations by assuming that the 
velocity is of the order  of r n, where n is a negative integer, we would find that the terms on 
the left-hand-side of the Navier-Stokes equations are of the order of r 2 n -  1, and the order of 
the terms on the right-hand-side equation is r n-2. When n < - 1 ,  the order  of the inertial 
terms (left-hand-side equation) is always lower than that of the viscous terms. This makes all 
differential equations linear when n < -  1, as the nonlinear inertial terms become known 
functions. When n -- - 1 ,  the Navier-Stokes equations are of the order of r -3 on both sides, 
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and the solution is the well-known solution for a round laminar jet. The expansion of the 
Navier-Stokes  equations in r -~ and r -2, for the pressure term only, shows that ct = 0. The 
expansion of the Navier-Stokes equations in r 3 are 

2 a " a" a ' a 
9 

sin---0 + sin20 (a - cos 0) + sin30 (1 + a'  sin 0 - a cos 0) + sin20 - 2 c  2 b~ (14) 

a" a ' 
sin 0 sin20 (cos 0 + a) + a 2 cos 0 , 2 sin30 - c 2 - b 1 cot 0 ,  (15) 

b ' ; + b '  1 c o t 0 +  a + - - ( a c o s 0 - 1 ) = 0  (16) 
sin 0 sin20 

where Equations (14), (15), and (16) correspond to the r, 0, and ~b components of the 
Navier-Stokes  equations. The corresponding force condition in the order of r ° and the 
torque condition in the order of r are 

f0 rr 
F = 2"n'pv 2 [(a ')  2 cot 0 + a'  cos 0 + aa'  + (2a + a") sin 0 + c 2 sin 0 cos 0] dO, (17) 

0 = b l ( a '  + 2 sin 0) sin 0 dO. (18) 

The solution of the above differential-equation set is that for a round laminar jet (see 
Landau [2], Squire [3], and Batchelor [24]): 

2 sin20 

a ( O ) -  l + c - c o s O '  

c 2 ( o )  = 
4[(c + 1) cos 0 - 1] 

(C "[- 1 --  COS 0 )  2 

(19) 

(20) 

b~(O) = 0 ,  (21) 

F 32(c + 1) { c 
2"n'pv 2 -- 3C(C + 2) + 4(C + 1) 2 In ~ ~ }  + 8(c + 1) (22) 

where c is a positive constant. As pointed out by Batchelor [24], the condition that the flow 
is to be free from singularities on the axis of symmetry (i.e. at 0 = 0 and 0 = 70 except at 
r = 0 was applied in obtaining the above Landau-Squire  round-laminar-jet solution. A more 
precise " je t  condition" in deriving this classical solution was given by Geurst  [25]. As F 

approaches infinity, c approaches zero. As F approaches zero, c approaches infinity. The 
dimensionless force 

The expansion of 
parameter  F / 2 ~ p v  2 is plotted in Fig. 1 versus the value of c. 
the governing equation in r -4 yields 

¢¢t t !  

a--~° + a---&-° ( a -  
sin 0 sin20 

2ad cos 0 
sin 0 - 2% sine 0 - c~ - 2 b i b  z cot 0 ,  

! 

cos 0) + a----2-° (1 - a cos 0 + 3a' sin 0) = - 3 c  3 - 2 b i b  2 , 
sin30 

,, ( a ) b 2  (2sin20 
b 2 + b~ cot 0 + ~ + sin20 1 + a '  sin 0 + a cos 0) = 0 ,  

(23) 

(24) 

(25) 
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Fig. 1. The dimensionless force parameter F/2~rpv z versus c. 

where (23), (24), and (25) correspond to the Navier-Stokes equations in the r, 0, and ~b 
directions, and the corresponding force and torque conditions are 

f0 '~ [2a'a 0 cot 0 + 3a~ cos 0 + aa; + a~ sin 0 + c 3 sin 0 cos 0] dO = 0 ,  (26) 

fo "~ (a'b z + aob ~ + 3b 2 sin 0) sin 0 dO - ( 2 7 )  2 7rpv2 • 

Multiplying (25) by sin20 and integrating it twice, we obtain the homogeneous solution 

B sin 0 
b2 (28) 

(c + 1 -  cos 0) 2 5 

which vanishes at 0 = 0 or 7r, where the azimuthal velocity must be continuous on the axis of 
symmetry. The value of the streamfunction is assumed to be zero on the axis of symmetry. 
The coefficients a 0 and c 3 are determined from Equations (23) and (24) with condition (26) 
and a o = 0 at 0 = 0 or 7r. Therefore, 

a o = 0  and c 3 = 0 .  (29) 

By (27) and (28), we obtain 

M B [ _ 4 + 2 ( c + l ) l n C + 2 +  8 ]  
2~rpv 2 - T 3c(c +2) ' (30) 

where B is a constant with a length unit. The dimensionless torque-to-force ratio M/FB, as 
obtained from (22) and (30), is plotted in Fig. 2. 

4.  D i s c u s s i o n  

The flow field, produced by a point force and a point torque, can be represented by a round 
laminar jet as a first-order approximation in the far field with the effect of a torque being 
neglected. The second-order approximation yields a solution corresponding to a given torque 
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Fig. 2. The dimensionless torque-to-force ratio M/FB versus c. 

and a zero force. The dimensionless parameter F/(87rpv 2) may be interpreted as a Reynolds 
number. If F/(8yrpp 2) is large, the flow field can be interpreted as a strong jet. If F/(87rpv 2) 
is small, the flow field can be interpreted as a weak jet. 

For a strong jet, c ~ 1, the round-laminar-jet solution in the region where cos 0 is not close 
to 1, can be reduced to 

a(O) =2(1 +cos  0)[1 
c + ,] 

I 

1 - cos 0 0"c2 
2 / 2  

u(r, O) - + O(c) , 
r 

2v 
v(r, O) - (1 + cos 0) + O(c) 

r s i n  0 

(31a) 

(31b) 

(31c) 

and the leading term of the swirling velocity is 

4M sin 0 
b2(0) - F(1 - cos 0, 2) [1 + O(c)]. (32) 

Equation (32) shows that the swirling velocity makes no contribution to this flow region in 
the first-order approximation, since F -  O(1/c). The magnitude of the swirling velocity b 2 
varies linearly with the ratio of the torque to the force in the second-order approximation. 
The leading term of (31a) is in agreement with Taylor's result by using potential-flow theory. 
From (31c), as 0-+ 0, the solution represents a line sink along the axis, 0 = 0, with a source 
density -8Try per unit length. In the region where cos 0 - 1, c and 1 - cos 0 are about the 
same order, and c can no longer be neglected. We introduce a new variable, ~ = V2/c  tan 0, 
and F ~- 327rpv2/3c, then 

1 

a ( ~ : ) -  1 + ¼ ~:~ ' (33) 

b2(~) - ( )2 
1 2 1 + ~ '  

(34) 
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Fig. 3. Compar ison  of swirl velocity 2~rpvx2w(O)/M from the boundary-layer  equations and the Navier -Stokes  
equat ions  with (a) c = 0.01 and (b) c = 0.1. 

where 

3 ' =  16~-~-p v 2 

This result was first given by Loitsyanskii [15], who solved the boundary-layer equations in a 
cylindrical coordinate system (x, r, ~b) with a strong-jet assumption. Equation (33) is 
identical to the result obtained by Schlichting [15] without swirl. In order to compare the 
swirling velocities obtained from the Navier-Stokes equations and the boundary-layer 
equations, both swirl velocities at a plane x = constant are plotted in Fig. 3. We note from 
Fig. 3 that the swirling velocity obtained from the Navier-Stokes equations is always smaller 
than that obtained from the boundary-layer equations. As the value of c and B become 
small, which represents a strong jet with a weak swirling velocity, both results are very close 
to each other as shown in Fig. 3a. The leading term of the swirling velocity obtained from 
the boundary-layer theory in cylindrical coordinates is 

p 
w(r) = -~ b2(r ) . (35) 

For a weak jet, c >> 1, a and b 2 c a n  be approximated by 



a(O) -  F 2 sin20, 
87rpv 

M 
b2(O ) - ~ ~,.l.gpl}2 sin 0 . 
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(36) 

(37) 

A weak jet corresponds to a low-Reynolds-number flow. The velocity field can be obtained 
by a linear superposition of one due to a point force and another due to a point torque. We 

note from (36) and (37) that a(O) is related to F only, and b2(O ) is related to M only. 
Actually, a(O) corresponds to a Stokeslet which is the solution of a Stokes flow due to a 
point force, and b 2 ( 0  ) corresponds to a rotlet which is the solution of a Stokes flow due to a 
point torque (see Chwang and Wu [26]). 

The solution given in (19) represents a jet of fluid moving away from the origin and 
entraining quiescent fluid from outside the jet. The edge of the jet can be defined as the 
place where the streamlines are at their minimum distances from the axis, and this edge 

occurs at 0 = 00, where cos 0o = 1/(1 + c). If we assume that the maximum swirling velocity 

occurs at 0 = Ore, then by (28), we have 

4 cos 00 (38) 
cos 0m = 1 + V 1 + 8 cos oo 

From the above expression, 0,, is always less than 00 except at 0 o = 0 or 7r/2. This means that 
the maximum swirling speed occurs inside the jet except at zero Reynolds number or at an 
infinitely large Reynolds number where the maximum swirling speeds occur at the edge of 

the jet. 
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